HIGH ENERGY PROTON DECHANNELING IN SILICON CRYSTALS

S. PETROVIĆ¹ and M. KOKKORIS²

¹ Laboratory of Physics, Vinča Institute of Nuclear Sciences, Belgrade, Serbia ² Department of Physics, National Technical University, Athens, Greece

OUTLINE OF THE TALK

Formulation of the dechanneling problem
Theory of the dechanneling
Results and perspective

Formulation of the dechanneling problem

- Energy loss of protons in silicon in the <110> direction, S_{ch} = αS_{ran}, α = const.
- 2. Exponential dechanneling function.

Ion dechanneling effect

Dechanneling function represents the number of dechanneled ions with respect to the total number of channeled ions (dechanneling ratio) after some crystal depth.

Theory of the dechanneling

- The dechanneling function is generated by a realisitic Monte-Carlo computer simulation code using the numerical solution of the proton equations of motion in the transverse plane.
- Continuum approximation is assumed with the continuum potential obtained from the Moliere's ion-atom interaction potential.
- Thermal vibrations of the crystal atoms, the energy loss of the proton and proton-electron multiple scattering are included in the code.
- The obtained dechanneling function is fitted with the appropriate analytical expression.

Gomperz type sigmoidal dechanneling function

Gompertz dechanneling function

=N_o
$$\frac{e^{-\exp(-k(x-x_c))} - e^{-\exp(kx_c)}}{1 - e^{-\exp(kx_c)}}$$

Exponential dechanneling function

$$N_{d} = N_{o} (1 - e^{-kx})$$

Results

Energy loss of channeled ions

 $S_{ch} = a(x)S_{ran}$

Thank you for your attention