# Radiation Damage in Fe-Cr Alloys for Fusion Applications

#### G. Apostolopoulos

National Center for Scientific Research "Demokritos", Athens, Greece



2<sup>nd</sup> LIBRA Users Meeting

# Outline

#### Fusion

- Introduction & Status
- Basic material problems
- Fe-Cr alloys and their importance for Fusion
- Low-T ion irradiations at "Demokritos" TANDEM facility with in-situ resistivity measurements



# People

- G. Apostolopoulos K. Mergia
- S. Messoloras

E. Devlin N. Moutis

M. Gjoka V. Nousiou K. Mergia

A. Lagoyannis Th. Merzimekis X-Ray & Neutron Scattering, Transport properties

Mössbauer Spectroscopy

Magnetic Measurements

Ion Irradiations



Radiation damage in FeCr alloys

# **Fusion Energy**

#### Fusion is a potential alternative energy source

- Low carbon emissions
- Abundant fuel, high efficiency
- No long-lived radio-active waste, safe & reliable operation
- Energy production has been demonstrated (JET, UK)
  - Magnetically confined plasma in a TOKAMAK
  - $D+T \rightarrow {}^{4}He$  (3.517 MeV)+*n* (14.069 MeV)
  - Closed Tritium fuel cycle!
- Main roadblock to fusion power:
  - Materials to withstand the high radiation (n) doses in future power plants
- Current International Fusion Roadmap:
  - International Thermonuclear Experimental Reactor (ITER) (to operate by 2018)
  - International Fusion Materials Irradiation Facility (IFMIF) (expected operation ~ 2030)
  - Demonstration power plant (DEMO), ~2050



Nov 2009

#### Indicative Dose levels





|             | First Wall                       | Dose (dpa)  | Temperature |  |
|-------------|----------------------------------|-------------|-------------|--|
| ITER        | Austenitic steel                 | <3 dpa      | <300 °C     |  |
| DEMO        | EUROFER                          | 50-89 dpa   | <550°C      |  |
| Power Plant | ODS Ferritic Steels              | 100-150 dpa | <750 °C     |  |
| Power Plant | SiC <sub>f</sub> /SiC Composites | 100-150 dpa | upto 1100°C |  |



# First Wall Materials – Requirements/Problems

- High temperature operation
- High neutron radiation levels
- Low Activation
- He, H production
  - voids, embrittlement
- Radiation damage (atom displacement)
  - Degrade mechanical properties
  - Swelling





- Steels
  - Reduced Activation Ferritic/Martensitic (RAFM) steel
  - Oxide dispersion strengthened (ODS) steel
- Other materials: Vanadium alloys, SiCf/SiC composites
- Behavior under DEMO doses is unknown
- IFMIF will provide neutron beams relevant to fusion conditions (*but not in near future*)
- Theoretical Modelling of radiation damage with quantitative prediction capability is highly desired



# Fe-Cr model alloy

- The base of the RAFM alloy steels
- Alloy phase stability and Irradiation behavior is currently studied theoretically by a number of methods (ab-initio, molecular dynamics, kinetic monte-carlo, ...) in a multi-scale approach
- Experimental validation is a crucial part of this effort
- Demokritos" participates actively to the Fe-Cr exp. validation by a number of studies



#### Scope:

Development of a low-temperature ion irradiation facility with in-situ resistivity measurements at the "Demokritos" TANDEM accelerator

- EI. Resistivity is very sensitive to irradiation defects (vacancies, interstitials)
- Low-T prevents instantaneous annihilation of mobile defects
- Controlled post-irradiation annealing reveals kinetics of the defects



#### Experimental setup

A closed cycle He refrigerator installed at a beam line of "Demokritos" TANDEM accelerator



- 2-stage refrigerator provides 1W of cooling @ 10K (base temp.)
- Cryogen free, continuous unattended operation



# Sample preparation

- Thin disks of ~11mm diameter are prepared from model alloy bars by cutting and thinning/polishing
- Target thickness is 50 µm (optimized for irradiation / measurement)
- Meander shape cut with spark erosion
  - optimize geometrical factor for resistivity measurement
  - provide contact locations for current/voltage leads





# **Electrical connections & thermal anchoring**

- Spot-welding of current and potential leads
- Thermal anchoring on the cryostat's copper block by low-T varnish









Radiation damage in FeCr alloys

# **Resistivity measurement**

- State of the art, fast & accurate instrumentation
- Resolution:
  - resistance <  $10^{-6} \Omega$
  - resistivity (typical sample dimensions) 10<sup>-10</sup> Ω-cm
- 2 samples measured simultaneously @ 7 pts/s
  - control + irradiated sample







# Integration in the TANDEM Beam-line















Radiation damage in FeCr alloys

`Nov 2009

# 1<sup>st</sup> irradiation experiments





#### **Resistance increase vs Dose**





#### Damage Rate evolution





Radiation damage in FeCr alloys

# **Defect production & recombination**

$$\frac{dN_d}{d\Phi} = \sigma_d (1 - v_0 N_d)$$

•  $N_d$ : defect concentration •  $\sigma_d$ : defect production cross-section •  $v_q$ : recombination volume

$$\Delta R \propto \rho_d N_d$$



# Summary

- Understanding of radiation damage in Fe-Cr alloy is crucial for the Fusion Materials program
- An in-situ low-T resistivity set-up under ion irradiation has been successfully operated at "Demokritos"
- Radiation damage in Fe-Cr will be studied under proton irradiation
- The annealing system for Resistivity recovery measurements will be developed next



# Thank you for your attention ...



2<sup>nd</sup> LIBRA Users Meeting

# **Additional Material**



2<sup>nd</sup> LIBRA Users Meeting

Nov 2009

## Post-irradiation annealing / Res. Recovery





# **Group Activities in Fe-Cr Alloys**

#### Structural properties

- Short Range Ordering (SRO), phase stability, Cr clustering studied by means of Mössbauer spectroscopy, SANS, X-Ray diffraction
- Correlation with magnetic properties, Magnetic measurements, SANS
- Transport properties
  - Resistivity of un-irradiated alloys
  - Ion irradiation and resistivity recovery studies

